

Optimal Charging and Discharging Scheduling of On-Board EV Chargers and ESS Considering Distribution Line Capacity, Building Load Imbalance and Peak Shaving

Gyusub Lee Seoul National University Power System Lab.

Contents

- 1. Introduction
- 2. Problem Formulation
- 3. EV and ESS Charging and Discharging Scheduling
- 4. Case Study
- 5. Discussion

Introduction

Increase On-board Charger EV Penetration

- Most EVs will charge their battery at night time
 - Required ISO to increase line capacity
- High load density at specific time period
 - Voltage drop and Increase of line loss
- Connected to three-phase randomly
 - three-phase load imbalance of a building

EV charging scheduling considering line capacity and three-phase load imbalance

Increase Energy Storage System (ESS) in distribution System

• ESS can be utilized for peak shaving, frequency control, and etc.

Introduction

Proposed on-board EV charger and ESS charging and discharging scheduling

- Objective
 - Avoid a line overload and reduce the total distribution line loss
 - Reduce a three-phase load imbalance
 - Peak shaving at day time
- Assumption
 - ISO can control PEVs charging by using a building aggregator
 - Inverters of on-board charger are able to control their power factor
 - The difference between actual and forecasted load data is small
- Optimization
 - Sequential Linear Programming (SLP)
 - Use loss sensitivity for linearizing a objective function

EV can provide a reactive power

Simplified distribution power system

- Load : constant power load
- EV Charger : provide or absorb P_{EV} and O_{EV} when a bus voltages is maintained within the rated voltage

Voltage control and power loss with respect to EV

$\mathbf{E}_{S}, \mathbf{E}_{R}, \mathbf{P}_{Loss}$ can be functionally expressed as $\mathbf{P}_{EV}, \mathbf{Q}_{EV}$

•
$$E_R = \sqrt{\frac{E_S^2 - 2(R_L P_R + X_L Q_R) \pm \sqrt{8R_L X_L P_R Q_R - 4E_S^2(R_L P_R + X_L Q_R) + E_S^4 - 4(R_L^2 Q_R^2 + X_L^2 P_R^2)}{2}}$$

•
$$E_S = \sqrt{E_R^2 + 2(R_L P_R + X_L Q_R) + \frac{(R_L^2 + X_L^2)(P_R^2 + Q_R^2)}{E_R^2}}$$

•
$$P_{Loss} = \left| \check{I_R} \right|^2 R_L = \left| \frac{P_R - jQ_R}{E_R} \right|^2 R_L = \left| \frac{(P_{Load} + P_{EVs}) - j(Q_{Load} - Q_{EVs})}{E_R} \right| R_L = h_1(P_{EVs}, Q_{EVs})$$

- EVs can provide reactive power to system when they are idle
- Maintain a bus voltage and reduce line loss by charging EVs

EV and ESS Charging and Discharging Scheduling

Scheduling formulation for EV and ESS

- Objective Function : Minimize the total distribution line loss
 - Minimize a increasing loss caused by EV and ESS charging at base load

Use loss sensitivity due to EV and ESS charging

$$J = Min\left(\sum_{h=1}^{N} \Delta P_{Loss}^{h}\right) = Min\left(\sum_{h=1}^{N} \left(P_{EV+Load}^{h} - P_{Load}^{h}\right) + \left(P_{ESS+Load}^{h} - P_{Load}^{h}\right)\right)$$

- Constraints
 - Limitation of Line capacity

$$\sqrt{\left(\sum_{i=1}^{N_P} P_i^h\right)^2 + \left(\sum_{i=1}^{N_P} Q_i^h\right)^2} \le \Delta S_{max}^h , \qquad \Delta S_{max}^h = S_{building}^h - S_{Load}^h$$

 $\succ \text{ Three-phase load balance (EV building bus)}$ $\sum_{i=1}^{N_P} P_{i,j}^h \ge \Delta P_{phase}^h \text{ for } j = A, B, C, \qquad \Delta P_{phase}^h = \max_{\substack{phase \\ A,B,C}} \left\{ \left| P_A^h - P_B^h \right|, \left| P_B^h - P_C^h \right|, \left| P_C^h - P_A^h \right| \right\}$

EV and ESS Charging and Discharging Scheduling

Scheduling formulation for EV

> Limitation of Charger capacity $\sqrt{(P_i^h)^2 + (Q_i^h)^2} \le S_i^{charger} for all i_{th} EV$

Full charge of PEVs $\sum_{h=1}^{N_i^{charge}} P_i^h T = E_i \text{ for all } i_{th} \text{ EV , } T \text{: time interval}$

Voltage magnitude limits $V_{min} \le V_k^h \le V_{max}$ for $h = 1, 2, \dots, N_T$ and $k = 1, 2, \dots, N_B$

ESS discharging for Peak shaving

$$\sum_{i=1}^{N_p} P_{i,disc}^h + \sum_{i=1}^{N_{ESS}} P_{i,discESS}^h \ge P_{load,total}^h - P_{peak} \quad when \ P_{load}^h > P_{peak}$$

EV and ESS Charging and Discharging Scheduling

SLP flow chart for EV and ESS scheduling

Power Flow Calculation Module - Back/Forward Sweep PF Method

***** Test distribution system for simulation

PÖWERLAB

* Detailed specifications of the test system

Distribution Lines	Modified IEEE 30-bus test system				
Transformer	3Ø, 154/22.9 kV, 50 MVA, x=8%, x/r = 20				
ULTC	Installed at HV side, -10% to +10% LV regulation with 32 steps				
Capacitors	Substation Capacitors : 0.2 MVAR each				
Loads	At Bus 31 : 26 ~ 31 MW with 0.7~0.9 pf lag				
Peak Reference	36.5MW				
Building Max Line Cap.	4240kVA (5300kVA, margin 20%)				
	· Changeable PEV number : 94 ~ 114 PEVs				
	· Initial SOC : 0.1 ~ 0.4 (Average : 0.25)				
EVs	· Charging Start Time : $h = 1 \sim 3$, Charging End Time : $h = 5 \sim 8$				
	·Rated charger Capacity : 4 kVA				
	·Battery Capacity : 24, 28, and 30 kWh				
F (C.	·Rate Power: 10MW				
	· Capacity : 5MWh				
E332	· Initial SOC : 0.5				
	· Final SOC : 0.5				

EV scheduling when number of EVs are changed

Hourly change number of EVs

Hour	2(23h)	3(24h)	4(01h)	5(02h)	6(03h)	7(04h)	8(05h)	9(06h)
EV change	+5	+9	0	-10	-10	0	0	-4
Hour	10(07h)	11(08h)	12(09h)	13(10h)	14(11h)	15(12h)	16(13h)	17(14h)
EV change	-5	-25	-15	-12	-3	-5	0	+5

Load Profile

*WERI AB

- Scheduling Time : 22h 14h (17 hours)
- Peak Load : 36 [MW], Total load capacity : 240 [MWh], average power factor : 0.8 pf lag,

Three-phase imbalanced EV charging scheduling

PÄWERLAB

Three-phase load imbalance

WERI AB

Peak shaving at day time by discharging EV and ESS

Total Active Power of the System and Charging and Discharging Power of EV & ESS

PÄWERLAB

***** Total distribution line power loss

Loss	Conventional [kWh]	Proposed [kWh]	Reduced [%]	
1 Building (Bus 25)	8.34	8.20	1.44	
3 Buildings (Bus 16, 21 and 25)	8.50	7.97	6.24	

Conclusion

Propose Onboard Charger EV and ESS charging and discharging scheduling

- Consider capability that EV provide reactive power
 - > Avoid a line overload and reduce the total distribution line loss
 - Reduce a three-phase load imbalance
- Discharge EV and ESS for peak shaving at day time

* Theoretical analysis

Problem formulations with respect to EV

* Case Study

Proposed method is capable of achieving its objective effectively

